Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters








Year range
1.
Braz. j. med. biol. res ; 55: e11857, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364549

ABSTRACT

Genome-wide analysis using microarrays has revolutionized breast cancer (BC) research. A substantial body of evidence supports the clinical utility of the 21-gene assay (Oncotype DX) and 70-gene assay (MammaPrint) to predict BC recurrence and the magnitude of benefit from chemotherapy. However, there is currently no genetic tool able to predict chemosensitivity and chemoresistance to neoadjuvant chemotherapy (NACT) during BC treatment. In this study, we explored the predictive value of DNA repair gene expression in the neoadjuvant setting. We selected 98 patients with BC treated with NACT. We assessed DNA repair expression in 98 formalin-fixed, paraffin-embedded core biopsy fragments used at diagnosis and in 32 formalin-fixed, paraffin-embedded post-NACT residual tumors using quantitative reverse transcription-polymerase chain reaction. The following genes were selected: BRCA1, PALB2, RAD51C, BRCA2, ATM, FANCA, MSH2, XPA, ERCC1, PARP1, and SNM1. Of 98 patients, 33 (33.7%) achieved pathologic complete response (pCR). The DNA expression of 2 genes assessed in pre-NACT biopsies (PALB2 and ERCC1) was lower in pCR than in non-pCR patients (P=0.005 and P=0.009, respectively). There was no correlation between molecular subtype and expression of DNA repair genes. The genes BRCA2 (P=0.009), ATM (P=0.004), FANCA (P=0.001), and PARP1 (P=0.011) showed a lower expression in post-NACT residual tumor samples (n=32) than in pre-NACT biopsy samples (n=98). The expression of 2 genes (PALB2 and ERCC1) was lower in pCR patients. These alterations in DNA repair could be considered suitable targets for cancer therapy.

2.
Genet. mol. res. (Online) ; 7(1): 127-132, Jan. 2008. ilus, tab
Article in English | LILACS | ID: lil-553779

ABSTRACT

DNA damage activates several mechanisms such as DNA repair and cell cycle checkpoints. The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3 and Ddc1 subunits is an early response factor to DNA damage and activates checkpoints. This complex is structurally similar to the proliferating cell nuclear antigen (PCNA), which serves as a sliding clamp platform for DNA replication. Growing evidence suggests that PCNA-like complexes play a major role in DNA repair as they have been shown to interact with and stimulate several proteins, including specialized DNA polymerases. With the aim of extending our knowledge concerning the link between checkpoint activation and DNA repair, we tested the possibility of a functional interaction between the Rad17/Mec3/Ddc1 complex and the replicative DNA polymerases alpha, delta and epsilon. The analysis of sensitivity response of single and double mutants to UVC and 8-MOP + UVA-induced DNA damage suggests that the PCNA-like component Mec3p of S. cerevisiae neither relies on nor competes with the third subunit of DNA polymerase delta, Pol32p, for lesion removal. No enhanced sensitivity was observed when inactivating components of DNA polymerases alpha and epsilon in the absence of Mec3p. The hypersensitivity of pol32delta to photoactivated 8-MOP suggests that the replicative DNA polymerase delta also participates in the repair of mono- and bi-functional DNA adducts. Repair of UVC and 8-MOP + UVA-induced DNA damage via polymerase delta thus occurs independent of the Rad17/Mec3/Ddc1 checkpoint clamp.


Subject(s)
Cell Cycle Proteins , DNA-Directed DNA Polymerase/metabolism , DNA Repair , Phosphoproteins/metabolism , Nuclear Proteins/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Proliferating Cell Nuclear Antigen/metabolism , DNA-Directed DNA Polymerase/classification , DNA, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics
3.
Braz. j. med. biol. res ; 40(10): 1287-1304, Oct. 2007. ilus, tab
Article in English | LILACS | ID: lil-461366

ABSTRACT

The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.


Subject(s)
Animals , Mice , Rats , Antioxidants/pharmacology , Benzene Derivatives/pharmacology , Organoselenium Compounds/pharmacology , Porphobilinogen Synthase/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Benzene Derivatives/toxicity , Models, Biological , Mutagenicity Tests , Organoselenium Compounds/toxicity
4.
Braz. j. med. biol. res ; 38(4): 477-486, Apr. 2005. tab
Article in English | LILACS | ID: lil-398187

ABSTRACT

Apomorphine is a dopamine receptor agonist proposed to be a neuroprotective agent in the treatment of patients with Parkinson's disease. Both in vivo and in vitro studies have shown that apomorphine displays both antioxidant and pro-oxidant actions, and might have either neuroprotective or neurotoxic effects on the central nervous system. Some of the neurotoxic effects of apomorphine are mediated by its oxidation derivatives. In the present review, we discuss recent studies from our laboratory in which the molecular, cellular and neurobehavioral effects of apomorphine and its oxidized derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), were evaluated in different experimental models, i.e., in vitro genotoxicity in Salmonella/microsome assay and WP2 Mutoxitest, sensitivity assay in Saccharomyces cerevisiae, neurobehavioral procedures (inhibition avoidance task, open field behavior, and habituation) in rats, stereotyped behavior in mice, and Comet assay and oxidative stress analyses in mouse brain. Our results show that apomorphine and 8-OASQ induce differential mutagenic, neurochemical and neurobehavioral effects. 8-OASQ displays cytotoxic effects and oxidative and frameshift mutagenic activities, while apomorphine shows antimutagenic and antioxidant effects in vitro. 8-OASQ induces a significant increase of DNA damage in mouse brain tissue. Both apomorphine and 8-OASQ impair memory for aversive training in rats, although the two drugs showed a different dose-response pattern. 8-OASQ fails to induce stereotyped behaviors in mice. The implications of these findings are discussed in the light of evidence from studies by other groups. We propose that the neuroprotective and neurotoxic effects of dopamine agonists might be mediated, in part, by their oxidized metabolites.


Subject(s)
Animals , Mice , Rats , Antiparkinson Agents/pharmacology , Apomorphine/analogs & derivatives , Apomorphine/pharmacology , Behavior, Animal/drug effects , Dopamine Agonists/pharmacology , Quinones/pharmacology , Antiparkinson Agents/toxicity , Apomorphine/toxicity , DNA Damage/drug effects , Dose-Response Relationship, Drug , Dopamine Agonists/toxicity , Mutagenicity Tests , Memory/drug effects , Oxidation-Reduction/drug effects , Quinones/toxicity , Saccharomyces cerevisiae/drug effects , Salmonella typhimurium/drug effects
5.
Braz. j. med. biol. res ; 38(3): 321-334, mar. 2005. ilus, tab
Article in English | LILACS | ID: lil-394802

ABSTRACT

DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.


Subject(s)
Animals , Humans , DNA Repair/physiology , DNA-Binding Proteins/physiology , Endodeoxyribonucleases/physiology , Eukaryotic Cells/chemistry , Genomic Instability , Nuclear Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Braz. j. med. biol. res ; 37(2): 159-165, Feb. 2004. tab, graf
Article in English | LILACS | ID: lil-354181

ABSTRACT

Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44 percent) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126 percent), while sod1delta had lower activity (77 percent) than the wild type. Glutathione levels in sod1delta were increased (200-260 percent) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167 percent) and sod2delta (225 percent) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.


Subject(s)
Antioxidants , Glutathione Peroxidase , Oxidative Stress , Saccharomyces cerevisiae , Superoxide Dismutase , Catalase , Hydrogen Peroxide , Oxidation-Reduction , Reactive Oxygen Species , Saccharomyces cerevisiae , Superoxide Dismutase
7.
Genet. mol. res. (Online) ; 1(1): 79-89, Mar. 2002.
Article in English | LILACS | ID: lil-417649

ABSTRACT

The sensitivity responses of seven pso mutants of Saccharomyces cerevisiae towards the mutagens N-nitrosodiethylamine (NDEA), 1,2:7,8-diepoxyoctane (DEO), and 8-hydroxyquinoline (8HQ) further substantiated their allocation into two distinct groups: genes PSO1 (allelic to REV3), PSO2 (SNM1), PSO4 (PRP19), and PSO5 (RAD16) constitute one group in that they are involved in repair of damaged DNA or in RNA processing whereas genes PSO6 (ERG3) and PSO7 (COX11) are related to metabolic steps protecting from oxidative stress and thus form a second group, not responsible for DNA repair. PSO3 has not yet been molecularly characterized but its pleiotropic phenotype would allow its integration into either group. The first three PSO genes of the DNA repair group and PSO3, apart from being sensitive to photo-activated psoralens, have another common phenotype: they are also involved in error-prone DNA repair. While all mutants of the DNA repair group and pso3 were sensitive to DEO and NDEA the pso6 mutant revealed WT or near WT resistance to these mutagens. As expected, the repair-proficient pso7-1 and cox11-Delta mutant alleles conferred high sensitivity to NDEA, a chemical known to be metabolized via redox cycling that yields hydroxylamine radicals and reactive oxygen species. All pso mutants exhibited some sensitivity to 8HQ and again pso7-1 and cox11-Delta conferred the highest sensitivity to this drug. Double mutant snm1-Delta cox11-Delta exhibited additivity of 8HQ and NDEA sensitivities of the single mutants, indicating that two different repair/recovery systems are involved in survival. DEO sensitivity of the double mutant was equal or less than that of the single snm1-Delta mutant. In order to determine if there was oxidative damage to nucleotide bases by these drugs we employed an established bacterial test with and without metabolic activation. After S9-mix biotransformation, NDEA and to a lesser extent 8HQ, lead to significantly higher mutagenesis in an Escherichia coli tester strain WP2-IC203 as compared to WP2, whereas DEO-induced mutagenicity remained unchanged


Subject(s)
DNA, Fungal/genetics , Oxidative Stress/genetics , Mutagens/toxicity , DNA Repair/genetics , Saccharomyces cerevisiae/genetics , Epoxy Compounds/toxicity , DNA, Fungal/drug effects , DNA Damage/drug effects , DNA Damage/genetics , Diethylnitrosamine/toxicity , Genes, Fungal , Oxyquinoline/toxicity , Phenotype , Saccharomyces cerevisiae Proteins/drug effects , Saccharomyces cerevisiae Proteins/genetics , DNA Repair/drug effects , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects
8.
Rev. microbiol ; 29(4): 265-71, out.-dez. 1998. graf
Article in English | LILACS | ID: lil-251734

ABSTRACT

An aerobic Gram positive spore-forming bacterium was isolated drom cellulose pulp mill effluent. This microorganism, identified as "Bacillus" sp. and named IS13, was able to rapdly degrade the organic chlorinateed compound 4, 5, 6-trichloroguaiacol (4, 5, 6-TCG) from a culture containing 50 mg/l, wich corresponds to about 3,0E4 times the concentration found in the organic chlorinated compound 4, 5, 6-TCG decreasing, the lack of by-products had shown by such analysis lead to verify the possibility of either adsorption of absorption of 4, 5, 6-TCG by the cells, instead of real biodegradation. There were no traces of 4, 5, 6-TCG. Plasmid isolation was attempted by using different protocols. The best results werw reached by CTAB method, but no plamid DNA was found in "Bacillus"sp. IS13. The results suggest that genes located at the bacterial chromossome might mediate the high decrease of 4, 5, 6-TCG. The importance of this work is that, in being a natural ocurring microorganism, "Bacillus" sp. IS13, can be used as inoculum in plant effluents to best organochlorinated compounds biodegradation.


Subject(s)
Bacillus/metabolism , DNA, Bacterial , Cellulose , Industrial Effluents , Guaiacol/analogs & derivatives , Plasmids , Spectrophotometry , Biodegradation, Environmental , Chromatography, Gas
9.
Mem. Inst. Oswaldo Cruz ; 86(supl.2): 71-74, 1991. tab
Article in English | LILACS | ID: lil-623944

ABSTRACT

Because of the increase use of alkaloids in general medical practice in recent years, it is of interest to determine genotoxic, mutagenic and recombinogenic response to different groups of alkaloids in prokaryotic and eucaryotic organisms. Reserpine, boldine and chelerythrine did not show genotoxicity response in the SOS-Chromotest whereas skimmianine showed genotixicity in the presence of a metabolic activation mixture. Voacristine isolated fromthe leaves of Ervatamia coronaria shows in vivo cytostatic and mutagenic effects in Saccharomyces cerevisiae hapioids cells. The Rauwolfia alkaloid (reserpine) was not able to induce reverse mutation and recombinational mitotic events (crossing-over and gene conversion) in yeast diploid strain XS2316.


Subject(s)
Recombination, Genetic , Saccharomyces cerevisiae/physiology , Alkaloids , Mutation
10.
Rev. bras. genét ; 13(3): 393-408, Sept. 1990. ilus, tab
Article in English | LILACS | ID: lil-94167

ABSTRACT

Foi examinada a resposta mutagênica de células diplóides de S. cerevisiae, homozigotas para a mutaçäo pso4-1 em comparaçäo com a cepa selvagem correspondente. Observou-se que o diplóide pso4-1 apresenta uma acentuada reduçäo nas freqüências de mutaçäo reversa induzidas após tratamento com radiaçäo UV, oy furocumarinas mono e bifuncionais mais UVA. Esta severa inibiçäo na mutagênese induzida ocorre principalmente em doses mais elevadas dos diferentes agentes genotóxicos utilizados. Em adiçäo ao seu efeito sobre o processo de mutagênese o mutante pso4-1 exibe um bloqueio generalizado na recombinaçäo miótica-recíproca (recombinaçäo) ou näo recíproca-espontânea e induzida. Estas observaçöes indicam que o gene PSO4 controla simultaneamente os processos de mutagênese de recombinaçäo, atuando sobre um mecanismo de reparo recombinacional sujeito a erro, comparável ao reparo SOS presente em E. coli


Subject(s)
Mutation , Saccharomyces cerevisiae/genetics , Diploidy , Furocoumarins , Recombination, Genetic/radiation effects , DNA Repair/radiation effects , Ultraviolet Rays
11.
Rev. bras. genét ; 11(3): 505-18, sept. 1988. ilus, tab
Article in English | LILACS | ID: lil-62616

ABSTRACT

Water samples within the area of the II Petrochemical Industrial Complex (pluvial draining accumulation, safety basins and industrial effluent) and at different points along the Caí river were tested for the presence of mutagens and/or carcinogens using the Ames test. Positive results were obtained for the TA 100 an TA 98 strains with or without microsomal activation in samples within the area of the Petrochemical Industrial Complex and at the Caí river sampling sites closest to the industrial complex. These results suggest the presence of mutagens causing frameshift and base-pair substitution mutations, indicating the need for continuous monitoring of the area of influence of the III Petrochemical Industrial Complexo to evaluate the full environmental impact of this industrial complex


Subject(s)
Chemical Industry , Mutagens/analysis , Water Pollution, Chemical/analysis , Water/analysis , Brazil
12.
Rev. bras. genét ; 11(3): 783-90, sept. 1988. ilus, tab
Article in English | LILACS | ID: lil-62624

ABSTRACT

Os alcalóides furoquinoleínico esquimianina e benzofenantridínico celeritrina, extraídos de uma espécie da família Rutaceae foram testados quanto ao aspecto tóxico-genético através do cromoteste-SOS. Nos testes realizados na ausência de metabolizaçäo, ambos alcalóides näo mostraram atividade genotóxica, sendo que a esquimianina apresentou um efeito citotóxico nas concentraçöes mais elevadas. Na presença de mistura de ativaçäo metabólica, a esquimianina mostrou-se genotóxica sendo que este efeito foi mais acentuado quando se empregou fraçäo microssomal induzida com Aroclor 1254 em relaçäo aquela induzida com 3-metilcolantreno


Subject(s)
Alkaloids/toxicity , Escherichia coli/drug effects , Chemistry , Colorimetry , Cytotoxins , Mutagens/analysis , Plant Extracts/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL